Polynomial Hermite Interpolation for Root Finding and Event Location
نویسنده
چکیده
منابع مشابه
Barycentric Hermite Interpolants for Event Location in Initial-Value Problems
Continuous extensions are now routinely provided by many IVP solvers, for graphical output, error control, or event location. Recent developments suggest that a uniform, stable and convenient interpolant may be provided directly by value and derivative data (Hermite data), because a new companion matrix for such data allows stable, robust and convenient root-finding by means of (usually built-i...
متن کاملgH-differentiable of the 2th-order functions interpolating
Fuzzy Hermite interpolation of 5th degree generalizes Lagrange interpolation by fitting a polynomial to a function f that not only interpolates f at each knot but also interpolates two number of consecutive Generalized Hukuhara derivatives of f at each knot. The provided solution for the 5th degree fuzzy Hermite interpolation problem in this paper is based on cardinal basis functions linear com...
متن کاملLag Based Hermite Interpolation Method for Solving a Root of Nonlinear Equations
In this paper we propose a learning based iterative numerical method for computing a rootξ of a non-linear equation of the form f(x) = 0 in the interval [a,b]. Lag based method through Hermite interpolation modeled root discovery approach is developed and demonstrated in this paper. The new method has been tested for a series of functions considered by several researchers. The numerical experim...
متن کاملOptimal derivative-free root finding methods based on the Hermite interpolation
We develop n-point optimal derivative-free root finding methods of order 2n, based on the Hermite interpolation, by applying a first-order derivative transformation. Analysis of convergence confirms that the optimal order of convergence of the transformed methods is preserved, according to the conjecture of Kung and Traub. To check the effectiveness and reliability of the newly presented method...
متن کاملCase study in bivariate Hermite interpolation
In this article we investigate the minimal dimension of a subspace of C1(R2) needed to interpolate an arbitrary function and some of its prescribed partial derivatives at two arbitrary points. The subspace in question may depend on the derivatives, but not on the location of the points. Several results of this type are known for Lagrange interpolation. As far as I know, this is the first such s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010